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COMPARABILITY OF THE MOTION OF GRAVITATING SYSTEMS 
WITH RESPECT TO ITS RECURRENCE IN TIME* 

2H.S. EXSHANOV and AA. KALYBAEV 

The sufficient condition of comparability of the motion of gravitating 
systems recurrent in time, and of its various characteristics treated as 

functions of time, is given. 

1. Formulation of the problem. Consider a mechanical system of n bodies (G,,) consist- 
ing of material points O,,O,,...,O, with masses M,,M,,. ..,M, , mutually attracting in accord- 

ance with Newton's Law. Let xi,yi,zi be the position coordinates, Ui,Uir Wi the velocity ccmpon- 
ents of the body Oi in the barycentric frame of reference Oryz, and let 

U=y c 
1Qi<j<n 

$!$ 

be the force function of the system G, where y is the gravitational constant and Tij the 

distance between the bodies Oi,Oj(i =#=j = 1,2,..., n).The motion of the system G,, is described 
by the solution of the differential equations /l/ 

Zi‘ = ui, y,'= Vi, zi'= U$ (1.1) 

M+u; = iW/dxi, M ivi’ = X3&, M,wj’ = dUldri 

satisfying the initial conditions for the form 

zi (Q = xi03 Yi (01 = YiOv % (0) = ziO (1.2) 

ui (0) = uio7 Vi (0) = Uioy WI (0) = Wio 

Let 

4 = I5103 I/10? * * ‘, &lo, 40, VI03 . . 9,’ W”O} 
g CL 4) = 1% (4 Q), Yl (6 (I), . * -9 z, (12 cl), % (I, 4, 01 (t, q).. * . , 

4I CL qf) 

be the &dimensional vector and vector function representing, respectively, the initial state 
of the motion of G, and 

its kinetic energy along the trajectory of motion g(t,q), where t is the time. 
If the motion g(t. q) of system G, is Poisson stable recurrently and periodically, or 

almost periodically, then the kinetic energy TIgft, q))1 of the system, regarded as a function 
of time, possesses every property of recurrence of the motion with time described above. We 
pose the problem of inverting this assertions: if the kinetic energy T [g(t, q)] of the system, 
regarded as a function of time, is Poisson stable, recurrent, and periodic or almost periodic, 
what additional conditions are required for the motion g(t, q) to possess the time recurrence 
properties listed above? 

2. Dynamic systems in metric spaces. 
metric p . 

Let M be a complete metric space with the 
and let g(t. .) denote a one-parameter family of mappings of M onto iteself,defined 

for all rt 1 values of the parameter tER, and the elements qEM, where t is time. 
The terminology, concepts and definitions used are those of /2--4/. 

We denote by g(Rr, q),g@?,+, q] and g (RI-,q) the trajectory and the positive and negative 

half-trajectories of the motion g(t, q). We have Rx-= 
g is fixed. 

{t < O), OR,+ = {t > 0) and the quantity 
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We shall call negatively (positively) stable and Lagrange stable motions, L-(L+) -stable 
and L-stable for brevity. Similarly, we shall Call negatively (positively) stable and 
Poisson stable motions, p(P*)-stable and P-stable respectively. 

Note that if the motion g(t,9) is P(p)-stable, then the following inclusion holds: 

g (R,, 9) c g (RT, a) (g (R,, 4) c g CR:, 9)) (2.1) 

Proposition 2.1. If the motion g(t,q) isL--stable and P--stable, then it is L-stable. 
Indeed, since the motion g(t, 9) is F-stable, the inclusion (2.1) holds and the L-- 

stability of the motion implies that the set g (Ri, 9) is compact; therefore the set #(R,, q) 
is also compact. 

Let e be an arbitrary, positive real number, g (a < t < b, 9) = {g (t, 9) EM 1 t E [a, bl) 
the arc of the trajectory g(R,, q) 'of time length (b -a), and 
k(a <t < 6, q), pl <e} the open E 

R (g (a Q t < b, 9), E) = {p E Ml P 

-neighbourhood of the arc g(a< t< b, q). 

Proposition 2.2. The motion g(t, q) is periodic if and only if the instants of time t, 
and t, exist such that t, # t, and g (t,, q) = g (&, q). 

The necessity is obvious. Let tr > tl, tn - t, = s and g (t,, q) = g (t,, q). Then by virtue of the 
group theoretic property of the mapping we have a chain of equalities: g(--t,, g(q,p))= g(t,-:t,, 

4 = g (-tl, g (43. q)), q = g 09 - tl. d. g k q) = g (t + 8, 9). Consequently g(t,q) is a periodic motion and 
s>O is its period (s is the optionally smallest period). 

Proposition 2.3. If g (h .) is a dynamic system defined in a complete metric space M, 
then three types of motion exist: 

1) rest, i.e. Vt E 4, g (t, 9) = 9; 
2) periodic motion with the minimum positive period 5, i.e. g(t f z, q) = g(t,q) and 

g (tl, 9) # I! (tn, q) for all t, and tz such that 0 Q t, < f < T; 
3) non-periodic motion, i.e. the inequality g(t,, q)# g(t,, q) holds for all t,, t? E R, 

such that tl# tz . 
Let us assume that g(t,q) does not belong to the third type of motions. Then t1 + tz> 

exists such that g (fl, q) = g (tr, 4). According to the previous proposition the motion g(t,q) is 
periodic, therefore it either has the minimum positive period (i.e. it belongs to the second 
type of motions), or for all tER1g(t;q)=q, i.e. g(t,q) belongs to the first type of motions. 
The proposition is proved. 

Let C(R,, M) denote the set of all continuous functions f(t)with the domain of defini- 
tion R,, and values belonging to the space M. 

The real function PM, which puts a real non-negative number in correspondence with 
every pair of functions u(t), ~7 (t)E C(R,, IV) according to the formula 

defines the metric in the space c (R,,ICI)[41 . Here the spaceC(R,@)with the metric (2.2) is 

complete, and conditions pM(u, v)< e, phi (u, u) =e, pi (u, v)> e hold for all u, v E C (RI, M) 

and e>O, if and only if the following conditions hold: 

;u& P [u (07 v (41 < E, ,ye p lu (07 u (01 = E 

SUP 
lww~ 

P b (t), v @)I > E 

respectively. 
Similarly we introduce, in the space C(R,, M) the dynamic system g(s, a) as a one-para- 

meter family of mappings C(R1, IV) into themselves. Here the motion g(s, f(t)) is defined ;a, 
the displacements f(t + s) in the function f(t) where f(t)~ C(R,, M) is a fixed function. 

trajectory of the motion g(s, f(t)) 1s represented by the set g(R,, f(t))= {f(t f s)IsERI) of 
all displacements of the function f(1). The positive and negative half-trajectories Of the 

motion g(s, f(t)) are obtained analogously. 

Birkhof's theorem /4/. The function f(t)E C(R,, M) 1s recurrent if and only if it is 

L-stable and minimal. 
We denote by W(a, f) and W(o, f) the sets of all characteristic a-and o-sequences of 

the functions f(l)E C(R,, M) and W (A, f) = W (a, f) U W (0, f). 
Let K be the complete metric space with the metric * 0, and let C(R,,K) be the space of 

all continuous functions with values in K and metric UK. 

Definition 2.1. The function u(t)E C (R,,M) will be called negatively (positively) 

comparable with respect to time recurrence (in short:R- (R+) -comparable) with the function 

v (t) E C.(R,, 4, provided the following inclusion holds: 
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W (a, 4 c W la, 4 (W (0, ~1 C w (0, 4) (2.3) 

If W(h, V)C W(a, u), then the function u(t)will he comoarable with respect to time recur- 
rence (in short: R-comparable) with the function v(t). 

Definition 2.2. we shall call the functions u(t)= C (RI, M), v(t)” C (R,, K) negatively 
(positively) isochronous with respect to time recurrence (in short: .R-(R+)-isochronous), if 
the following relation holds: 

W (a, II) = W (a, U) (W (0, 11) = W (0, v)) (2.4) 

If on the other hand W(h, U) = W(h,u), then the functions u(t), u(t) will be called iso- 
chronous with respect to time recurrence (in short: R-isochronous). 

Proposition 2.4. The function us C (R,, M) is R-(R')- comparable with the function 

u(t)= C(R1, K) if and only if the following condition A holds: that a subsequence (t,,,} E W(a, 

u) (E W(& uf) can be extracted from every sequence (&jE W (a,u)(E W(63,U)). 

The necessity of the condition follows directly from the inclusion (2.3). Conversely, 
let condition A hold, but u(t)be not R--comparable with the function v(t). Then the function 
v(t) will have a characteristic a -sequence (km) E W(a, v), such that (rm) d W&U). Therefore, 

we can extract from {r,} a sequence &k1, such that no subsequence belonging to it appears in 
the set W (Q, u). This contradicts condition A, thus proving the sufficiency of proposition 
2.4. 

Proposition 2.5. If the function u(t)E C(R,. M) is R- (R+) -comparable with periodic 
function v(t)= C (R,, K), then u(t) is periodic and any period of the function oft) is also a 
period of u(t). 

Let s denote any non-zero period of the function v(t),i.e. v(t+~)= u(t), VtE R,. If s>o, 
then the sequence {-k&eN belongs to the set W(a,u). If on the other hand s<O, then the 
sequence (ks)keN E rir-(&,v). Therefore, depending on the sign of the period s, one of the sequence 

(-+s],,~ will belong to the set W(U,V) and thus also to the set W(a,u). We shall assume,to 

be specific that @s= t&eNm W(U,U). Consequently limpM [E (fk +- f), u(f)] = 0 as k- =. and we have 

(k_Cl)s-- kzl = /iii@ ft + s ” tg = u (t + s) 

i.e. U (t) = JJ (t + S). This means that s is a period of the function u(t). 

Proposition 2.6. The function ~(t)Ec (R,, kf) is R-comparable with periodic function 
v(t) E C (Rz, K) if 

The necessity 
ing to proposition 
of = (Q. Lets be 
arbitrary sequence 
integer Sk is such 

is bounded, and we 

and only if u(1) is R-(RC)-comparable with v(t). 
is obvious. Let u(t) be R" -comparable with periodic function u(t). Accord- 
2.4 the function u(t) is periodic and every period of v(t) is also a period 
the smallest positive period of the function u(t) , and let Ifa} be an 
belonging to tthe set W(o,u). We can find, for every natural number k, an 
a m?nner that skS<tk<(Sk+ 1)s. Here the sequence (&Y&9 where lk = t,“- rp, 

can extract from it a convergent subsequence {IkJ: 

Then 

u (t + I) = lim u (t + lki) = lim v(t + fki -skis) = lim u(t + tk,) = v(t) 
i-m i-00 i-m 

This means that 1 is a period of v f$ Therefore we have either l=O, or I=S. In each 
of these cases we have 

lim u (t + lki) = lim u (t+ lki + skis) = lim u (t + lki) = u(:+ I) = u(f) 
i-m i-00 i--e+ 

Thus (fki} E W$O,L(), i.e. condition A holds. Then according to (2.5) aft) is R+-comparable 
with v (t). 

From Propositions 2.5 and 2.6 and Theorem 2.1.1 of /4/, we have 

Proposition 2.7. The function u(l)= C(Rt,, ikf) is R-(R+) -comparable with periodic 
function v (t)EC(R,, K) if and only if u(t) is periodic and every period of v(t) is also a 
period of u(t). 

Proposition 2.8. The necessary and sufficient condition for the function u(t)= C(&, iw) 
to be Rw(R+) -comparable with the function 
of the set g (RI-, 

v(t)= C(RR,, K), is that a continuous mapping cp 
u(t)) onto the set g (RI-, v(t)) exists for all SEER,-, the mapping satisfy- 

ing the relation 
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cp Iv (t + s)l = 11 (t + s), tE R, (2.5) 

The proof is analogous to that of Theorem 2.1.2 of /4/, the latter expressing the cornpar- 
ability ofu(t)with the function v(t). 

Let M be a Banach space p(u, V) =)I u-_v[[, and f(t) E C(R,,M). We have the following two 
propositions /4/. 

Proposition 2.9. If the derivative u'(t)E C(R,, M) of the function u(t)= C(R,, M) is 
uniformly continuous on R,-(RI+), then it is R-(R+) -comparable with u(t). 

Proposition 2.10. If f(t) E C(R,, fif) and has a negatively (positively) compact primitive 
u (t)=C (R,, M), then u(t)is R- (R+) -comparable with the function f(t). 

3. R--isochronism.of the kinetic energy and motion of the L--stable system 
G I. Let 

' k (t7 q)l= iii ‘Ii IS” (t9 Tj) f yi* (tv 4) + Zt’ (tv q)] 

be the polar moment of inertia of the system G,, and 

I' [g (t* 9)1= 2 :$I Mi [+ tt* Q) 4 Ctv q) + Yi tt7 Q) ui tt7 q) + (3.1) 

zi(tt QJwi Ct7 9)l 

I” I&T (4 Q)l = 2 {T I&? (L 4 + 4 (3.2) 

be the first and second derivative with respect to time t, of the function 1 [g(t, q)], where h 
is the energy constant. 

Equation (3.2) is called the Lagrange-Jacobi equation /1/. 
Note that the motion g(t, q) is generated by the dynamic system if and only if 

2' Ig (k q)l E G (R,, RI+). 
We shall henceforth assume that the variables in g(t, q), are dimensionless, and put 

.o [g (t, q)] =r[g(t, q)] + 2T [g (t, q))1. We have Q [g (t, q)l = 11 g (t, q) /I2 for every fixed t E R, . This 
yields. 

Proposition 3.1. The motion g(t, q) of the system G, is L--stable if and only if the 

function Q [g (t, q)] = Q (t), Q (t) E C (R,, R,+). is L--stable. 
Since the runctlon I [g(t, q)], T [g(t, q)l is non-negative, we have 

Proposition 3.2. The function Q[g(t, g)l is L- -stable if and only if the functions 

Z [g (t, q)l, T Ig (t, q)l are L--stable. 

Proposition 3.3. If the motion g(t, q) of the system G, is L--stable, then the functions 
I [g (t, q)l = I (t), I’ [g (t, q)l = I’ (t), I” [g (t, q)l = I” (t), T [g (t, q)l = T (t)are R--isochronous. 

The conditions of the proposition imply that the motion 8 (t.q) is L--stable. Then, by 

virtue of Proposition 3.1 the function Ok(t,q)l will be L--stable, while by virtue of Propos- 

ition 3.2, every function I[g(t, q)l. T lg(t,q)l will be L--stable. Therefore the following inequal- 

ities hold: 

,&~_lUf)l<m. t~~P_I~'(l)I<m,(~~~_I~.'(f)I<~ 
._I 

from which the uniform continuity in R,- of the functions I(t), I‘(t), I”(t) and T(t) follows. This 

in turn yields, according to Proposition 2.6. the R--comparability of the functions I'(t) with 

I (I), I" (t) with I' (0, and I" (t) with T 0). since the L.--stability implies the negative compact- 

ness, it follows by virtue of Proposition 2'.10, that the function T(t) will be comparable with 
the function 1"(t), r(t) with r”(t) and I(t) with I’(t). Consequently, the functions listed above 
in Proposition 3.3 are R--isochronous with respect to each other. 

Proposition 3.4. If the motion g(t, q) of the system G,, is L--stable, then the functions 
Q(t) and T(t)are R--isochronous. 

Let (tk)E IV@, I’). According to the proposition 3.3,(td~ W(Q,I). These inclusions indicate 
that 

lim T (t + tk) = T (t). lim I(1 + $1 = I(t) 
k-Ln k-00 

Then 
lim Q (t + t,.) = :?I_ [I (t + tk) t_ 2T (t + th-)] = 
k- 

lim I(1 + tJ T 
k-m 

2 kz_ T (t - tk) = I (t) - 2T (1) = Q (0 

i.e. (41 = W(a. Q). and according to Proposition 2.4 the function Q(t) is R--comparable with T(i). 

Conversely, let (tk) E W(a,Q), i.e. 
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Then 

Since Q(t)+ UL = r(t)+ 211'(t)-+ h], we obtain by virtue of (3.21, the differential equation 

r"(t)+I(t)= Q (t)+- 2h. Recalling that in addition to ~ff,g) the expression sft +s,g) is also 

a solution of problem (l.l), (1.2) for every fixed s~R%,we obtain 

1" (1 + trr) + 10 + tir) = Q (t + @) + 2h 

The equation has a particular solution of the form 

from which we find, taking the inclusion tke W(a,Q) into account, that 

i.e. {!~JE W(a,I) and I(t) is R--comparable with the function Q(t). 
According to Proposition 3.3, the functions 1(t) and T(f) are R=isochronous. Therefore 

i&1 E W&,1) with T(t) is R--comprable with Q(f). Then the mutually R--comparable functions 
Q(t) and T(t) are R--isochronous. 

The following proposition is a corollary to Propositions 3.3 and 3.4. 

Proposition 3.5. If the motion of the system G,, is L--stable, then the functions r(t), 
I' (t), Y (t), T (t) and Q (@are R-isochronous. 

Let us denote by F Ig(t,g)l,F [Q(t)] the sets of all displacements of the functions g&p) 
and Q(t), and by rp the mapping of the set F [g(t,q)] onto the set F (O(t)], defined for all 
fixed SE R, by the relation rpigft -&s, q)] q Q[g(t + s, q)] = Q(t+ 8). It is clear here that 
cp [g(t + S, q)] = I( g(t + .s, q)lIp for every fixed tE ff, and for all SE R,. Therefore the follow- 
ing proposition holds. 

Proposition 3.6. The mapping rp is single-valued, continuous and closed. 
We note that the continuous and closed mappings belong to the class of so-called factorial 

mappings /5/. 

Proposition 3.7. The motion g(t, q) is non-periodic and the mapping cp is in 1:l corres- 
pondence if and only if the function Q(t) is non-periodic. 

Necessity. Let the motion g(t,g) be non-periodic and the mapping 'p be in 1:l corres- 
pondence. Then for all tl+ tt we have 

g @ + tlr nl, g it + %, g) = R l&z (tv PII, g it + t1, 9) # g (8 + ttr d 

and the mapping 'p places i,n 1:l correspondence such elements Q(t+tl) and Q(t+ t.), that Q(t+ 

tl) i; 0 0 + t21. Therefore we have, in particular, Q(t)#=Q(t+& Vssa R,. Consequently no real 
number s is a period of the function Q(t). In other words, the function Q(z) is non-periodic. 

Sufficiency. Let the function Q(t) be non-periodic, i.e. V~ER~,Q(~)=Q(~+ s), where 
Si, 0. Then g(t, q)#g(f+s,g) even more so, and g&p) is non-periodic. We shall assume that 

under these conditions the mapping cp is not in 1:l correspondence. Then the function Q(t+ tl) 
has, for some #,E R,, at least two inverse images g(t+t,, q), g(t+ tr,q), such that ~~g(t-+-t,,q)II*= 
ii g it i 12, 9) //$ E Q (2 -i- ~3) and t* - 2, > 0. ‘. Therefore I g ft. 4) II* = ii g 0 + ";, 8;:" = Q 0 + t) = Q (0 for all 
.t E R,, where z = t, - ti > 0. This contradicts the condition that is a non-periodic 
function, and the contradiction proves the sufficiency of the proposition. 

Knowing that every factorial mapping in 1:l correspondence is a homeomorphism, we use 
Propositions 2.8 and 3.7 to obtain 

Proposition 3.8. If the motion g(t, q) of the system G,,is L--stable and the function 
O(t) is non-periodic, then the motion g(t,* q) and kinetic energy TIg(t, q)] along the trajec- 
tory of this motion are R--isochronous as functions of time. 

4. Certain properties of the L-- 
kinetic energy. 

stable motion of a system with recoverable 

Proposition 3.6 implies that if the motion gft, q) of the system G, is L--stable and the 
kinetic energy T [g(t, q)] non-periodic, then the motion g(t, 9) is non-perodic. Taking this 
into account we shall first consider the case of the non-periodic function T[g(t, q)]. 

Proposition 4.1. If the motion g(t, q) of system G, is L--stable and the kinetic energy 
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T [g(t, q)l is P--stable, then the motion g(t, q) of the system is L-stable and R-isochronous 
with the function T [g(t, q)]. 

Indeed, the function Qlg@,&I and motion gfl,p) are L--stable, and together with the 
function T[g(t,g)] , also P--stable. According to Proposition 2.1, 
simultaneously L-- and P--stable, it is alsoL-stable, 

since the motion g(t,q) is 

it is R-isochronous with the function ~'[g(t,~)]. 
Then, according to Proposition 3.8 

Proposition 4.1 has a converse, i.e. the motion g(t, q) of the system G,, is L-stable and 
p-stable if and only if it is L--stable and the kinetic energy T[g(t, q)] is P-st&le. 

Proposition 4.2. If the InOtiOn g(f, q) Of the system G, is L--stable and the kinetic 
energy Tlg(t, q)] is minimal, the motion g(t, q) of the system is recurrent. 

According to Proposition 3.2 the function P fg (t, Q)I is L--stable, or the motion g(t, q) is 
L--stable. Therefore, the function TIg(t,q)] is L--stable. According to the Birkhof theorem 

the L-stable and minimal function T[g(t, q)] is recurrent, and therefore even more P-stable. 
Consequently, the motion g(t,q) is L-stable. Then, in accordance with the theorem on the 
integrals of recurrent functions, the function Q[g(t, q)] is also recurrent and R-isochronous 
with the motfon g&q). Therefore a homeomorphism 'p exists between the sets R]g(t,p)] andF[Q(t)] 
In particular, the inverse mapping cp- 1 is continuous at the point Q(t)~F[Qftf], i.e. for every 
e>O a number d(e,Q(#)f>e, can be found such, that 

so long as 

Let e be any fixed number. Since e-1 is continuous, we can find the number 6&Q(t)) at 
a point belonging to Q ft). Since Q(f) is a recurrent function, it follows that for 8 thus 
obtained the set 

R~R~Q)J(sERI(~~~~IQ(~+s)-Q(~)~~~) 

is relatively dense in R,. Therefore, the set 

Re(g)=(s~RIIlts~frielig(tfs,p)-ggf#,q)%dE) 

containing the set R,,(Q), is relatively dense in R,. Thus the motion g(t,p) is L-stable and 
the set R,(g) is relatively dense in R, for any s>O. By virtue of the criterion of recurr- 
ent motions /2, 3/, the motion g(t,q) is recurrent. 

Proposition 4.2 also has a converse , and the following proposition holds: the motion 
g(t, q) of the systemG,,is recurrent if and only if it is L--stable and the kinetic energy is 

minimal. 
Using the Bochner theorem on almost periodic motions /3/ we can prove, in exactly the 

same way. 

Proposition 4.3. If the motion g(t, q) of the system G,, is L--stable and the kinetic 
energy T [g 0, q)] almost periodic, then the motion g(t, q) of the system is almost periodic. 

Proposition 4.3 also holds in a more general form: the motion g (t? 41 of the system G, 
is almost periodic if and only if it is L--stable and the kinetic energy T [g(t, q)l is almost 
periodic. 

Proposition 4.4. If the motion gft, q) of the systemG,is L--stable and the kinetic 

energy T{g(t, q)l is periodic, then the motion g(t, q) of the system is periodic. 
Let the motion g&q) be L--stable and the kinetic energy ,T[g(t,q)l periodic. According 

to Propositions 3.2 and 3.5, the function Q[g(&q)] is periodic and the motion g(t,p) L-stable. 
Here either every real number SE RI is a period of the function Q[g(t,q)], or the function 
,Q[g(t,q)] has a minimum positive real period r. In the first of these cases the function 
QI~(~,~)] is constant and its total time derivative is equal to zero by virtue of system (l-1). 

Therefore, the motion g&q) is periodic and Proposition 4.4 is thus proved. 
Let us assume that 'TV R, is the minimum period of the function Qfg(t,&l. Then the set 

Fk (g) = {g (t + s, cl) Is = IN - UT* w 
will map onto the set F&(Q) = (Q (g (t f J, 9)lls G I@ - f)z, kc)) for any natural k, in 1:l correspond- 

ence. 
Indeed, if it is not so, the functions g(t+s,,q), gft +sa,q) will have the same mapping for 

certarn q,s% E ffk - i) T, &f , 1-e. Q Is (t -!- *I, 911 = Q fg @ i- $2, 4)) and the number s=]s,--se]<z will 

be a period of the function Qlg(t,q)l. This contradicts the condition of the choice of T. 
Therefore the mapping cp can be additionally defined SO that it becomes a homemorphism. Then 

the function Q[g(t,g)] and the motion g(t, q) will be isochronous. According to Proposition 2.7 

the motion g(t,q) is periodic. 
Like the previous propositions, Proposition 4.4 has a converse and the following 
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proposition holds: the motion g(t, q) of systemG,is periodic if and only if it is L--stable 
and the kinetic energy T Ig(1, q))1i.s periodic. 

Thus the recurrence of the kinetic energy of the negatively Lagrange-stable system of 
n bodies fully defines the character of the recurrence of the motion of the system. Since 
the differential equations (1.1) of the motion of the system of n bodies have, in particular, 
the energy integral from which we can obtain an explicit expression for the force function U 
of system G,, it follows that all arguments and discussions can be applied to the function u. 
such an approach may be convenient when the recurrence of the motions is checked experiment- 

ally, since when the masses are known, the force function depends on the distance between the 
bodies of the system. 

Conclusions. 1”. The isochronism, i.e. the mutual comparability with respect to time 
recurrence of the kinetic energy and motion of the system of n bodies is the necessary condi- 
tion for the Lagrange stability of motion of such a system. 

2”. The motion of an n-body system is determined by a Gn-dimensional vector function, 
and its kinetic energy by a scalar function depending on the last 3n components of the veloc- 
ities of motion of the system. The isochronism of the 6n-dimensional vector function g(t,q) 
and scalar functkon T [g(t, q))l = T(t) is characterized by the fact that the Lagrange stability 
is a special property of the motion of an n-body system. Since the Lagrange stability repres- 
ents one of the possible forms of stability of the motion, it is possible for the kinetic 
energy to be minimal in some sense along the trajectory of the Lagrange-stable motion of an 
n-body system. In particular, this is the case for the kinetic energy of a recurrent, almost 
periodic and periodic motion of an n-body system. In the cases discussed above the kinetic 
energy is minimal in the Birkhof sense. 

3”. Energy constructions have a long history in celestial mechanics. However, this is 
apparently the first time that the energy integral and its corollaries have been applied 
directly to the qualitative study of the motion of an n-body system in the form given here. 
We also note that the basic results remain valid for other forms of interaction between bodies, 
provided that they depend on the distance only. 
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3. 
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THE SEPARATION OF MOTIONS 

In different versions of the method of averaging, the motion is separated 
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IN SYSTEMS WITH RAPIDLY ROTATING PHASE* 

A.I. NEISHTADT 

into rapid oscillations and a slow drift with an accuracy depending on 
the order of approximation. It is shown below that in analytic systems 
with rapidly rotating phase this separation can be achieved so that the 
error is exponentially small. The remaining small error is shown to be 
theoretically impossible to eliminate in any version of the averaging 
method. From the statement of exponentially exact separation of oscilla- 
tions and drift it follows in particular that the time the adiabatic 
invariant is maintained in single-frequency Hamiltonian systems (such as 
a pendulum with a slowly varying frequency, a charged particle in a weakly 
inhomogeneous field, etc.) is exponentially large. This statement is also 
used to prove that the splitting of the separatrix that occurs in the 
neighbourhood of resonance close to an integrable Hamiltonian system with 
to degrees of freedom, is exponentially small. 
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