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COMPARABILITY OF THE MOTION OF GRAVITATING SYSTEMS
WITH RESPECT TO ITS RECURRENCE IN TIME*

ZH.S. ERZHANOV and A.A. KALYBAEV

The sufficient condition of comparability of the motion of gravitating
systems recurrent in time, and of its various characteristics treated as

functions of time, is given.
1. Formulation of the problem. Consider a mechanical system of n bodies (G,) consist-
ing of material points 0,,0,, ..., O, with masses M, M,,..., M, , mutually attracting in accord-

ance with Newton's Law. Let I Y, 2; be the position coordinates, u;, v;, w; the velocity compon-
ents of the body O; in the barycentric frame of reference QOzyz, and let

MM,
U=y i

F..
ISi<i<n 7

be the force function of the system G, where y is the gravitational constant and 7;; the
distance between the bodies 0;,0;(is=j = 1,2,..., n). The motion of the system G, is described
by the solution of the differential equations /1/

zi=wy, Yy o =y v (1.1)
M.guz" = 6[]/5.2:,, M,'U; = aU}Gy,, Miw,-' =0U;’éz,
satisfying the initial conditions for the form
7 (0) = zip, ¥ (0) = Hioy 2: (0) = 24 (1.2}
ui (0) = ugq, v; (0} = vip, w; (0) = wy,

Let
q= {IIOv Yigr » + +y Znoy Ugpy Vips « + oy wno}
gl ={z(t @ it @ .z (D 4, Q0 Qe
we (1, @)

be the 6-dimensional vector and vector function representing, respectively, the initial state
of the motion of (;, and

h
Tlg (.0l =—4 Y Milud (t.0) + 02 ¢ 0) + w2 1, g))
fams]

its kinetic energy along the trajectory of motion g(¢,g), where ¢t is the time,

If the motion g (f, g) of system G, is Poisson stable recurrently and periodically, or
almost periodically, then the kinetic energy T lg(t, ¢}l of the system, regarded as a function
of time, possesses every property of recurrence of the motion with time described above. We
pose the problem of inverting this assertions: if the kinetic energy T lg(f, ¢)] of the system,
regarded as a function of time, is Poisson stable, recurrent, and periodic or almost periodic,
what additional conditions are required for the motion g (t, g) to possess the time recurrence
properties listed above?

2. Dynamic systems in metric spaces. Let M be a complete metric space with the
metric o , and let g (. -) denote a one-parameter family of mappings of M onto iteself, defined
for all re:l values of the parameter t& R, and the elements g M, where t is time.

The terminology, concepts and definitions used are those of /2—4/.

We denote by g(R;, 9), g{(Ry*, ¢) and g (R,", q) the trajectory and the positive and negative

half-trajectories of the motion g (4, ¢). We have R = (t 0}, Ry' = {t > 0} and the gquantity
g is fixed.

*Prikl.Matem,Mekhan., 48,2,188-196,1984
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We shall call negatively (positively) stable and Lagrange stable motions, L™ (L*) -stable
and L-stable for brevity. Similarly, we shall call negatively (positively) stable and
Poisson stable motions, P~ (P*)-stable and P-stable respectively.

Note that if the motion g (t,q) is P~ (PY)-stable, then the following inclusion holds:

g(Ry, ) T g(RY, 9) (g(Ry, 9) T g (R, 9) (2.1)

Proposition 2.1. 1If the motion g (¢, g) isL™ -stable and P7-stable, then it is L-stable.
Indeed, since the motion g (¢, ¢) is P~ -stable, the inclusion (2.1) holds and the L™-

stability of the motion implies that the set g(Ry, 90 is compact; therefore the set g(R,, ¢
is also compact.

Let & be an arbitrary, positive real number, g@<Ct<b OV ={g(t, =M | ¢t e la, B}
the arc of the trajectory g(Ry, ¢) of time length (b —a), and Bt h g,8) ={ps Mip
lg@ <t<b, ¢), pl <&} the open & -neighbourhcod of the arc ga<{t<<b, g).

Proposition 2.2. The motion g(f, q) is periodic if and only if the instants of time ¢
and ¢, exist such that ¢ s, and g (4, q) = g (&, 9).

The necessity is obvious. Let >, t,—t, =s and g{t, g = g (&, q). Then by virtue of the
group theoretic property of the mapping we have a chain of equalities: g(—¢, g(t. ) = gt — 4,
Q=g (—t;, g(t3, 9)), g=g({s — b1, q), €(¢, g = g (¢t + 5, ¢. Consequently g(t, ¢ is a periodic motion and

£>0 1is its period (s is the optiocnally smallest period).

Proposition 2.3. I1f g(& -) is a dynamic system defined in a complete metric space ¥,
then three types of motion exist:

1) rest, i.e. ViR, 8(t, 9 =&

2) periodic motion with the minimum positive period T, i.e. g(l + 7,¢) = g(t, g0 and
g(t, Q) = & (4, g) for all t; and ¢, such that 0 < <, <55

3) non-periodic motion, i.e. the inequality g(t;; q) # g (t,. ¢) holds for all ¢, t, = R,
such that ¢ ##1t, .

Let us assume that g(t, ¢ does not belong to the third type of motions. Then & i,
exists such that g(t;,q) = g {t,9). According to the previous proposition the motion g(t g is
periodic, therefore it either has the minimum positive period (i.e. it belongs to the second
type of motions), or for all t=Ry gltjg) =4q, i.e. g(t ¢ belongs to the first type of motions.
The proposition is proved.

Let C (R,, M) denote the set of all continuous functions f(f) with the domain of defini-
tion R;, and values belonging to the space M.

The real function PM, which puts a real non-negative number in correspondence with
every pair of functions u (), v (f) & C (R,, M) according to the formula

om (&, v) = sup min {sup p [u (t), v ()], 1/1} (2.2)
1>0 <t

defines the metric in the space C (R,, M)[4] . Here the spaceC (R, M)with the metric (2.2) is
complete, and conditions pu (u, v) <€, pa (1, V) =¢, pm (¥, V) > ¢ hold for all u, ve& C (R, M)
and & >0, if and only if the following conditions hold:

‘sqlgn plu (), v <e, rf‘.‘i‘l’/a plu(@, v(i)l = ¢

fup, o0, w01
respectively.

Similarly we introduce, in the space C (f,, M) the dynamic system g(s, ) as a one-para-
meter family of mappings C (R;, M) into themselves. Here the motion g(s, f(#) is defined as
the displacements f(t - s} in the function f(f) where f(f) & C (R,, M)is a fixed function. The
trajectory of the motion g (s, f(#)) is represented by the set gRy, f@®)={(t+3sss R} of
all displacements of the function f(¢). The positive and negative half-trajectories of the
motion g(s, f(f)) are obtained analogously.

Birkhof's theorem /4/. The function f(f) € C (R;, M) is recurrent if and only if it is

L-stable and minimal.
We denote by W (e, f) and W (w, f) the sets of all characteristic a-and wo-sequences of

the functions f{)e& C(R,, M) and W, f) = W(a, ) U W (e, .
Let K be the complete metric space with the metric » ¢, and let C (R,, K) be the space of
all continuous functions with values in K and metric og.

Definition 2.1. The function u(f) & C (R,, M) will be called negatively (positively)
comparable with respect to time recurrence (in short: R~ (R*) -comparable) with the function
v() = C(R,, K), provided the following inclusion holds:



129

Wi, v) C Wiz, v} (W, )T Wle, u) (2.3

1f Wk, v) C W (a, u), then the function u () will be comparable with respect to time recur-
rence (in short: R-comparable) with the function v (f).

Definition 2.2. We shall call the functions u(f) = C (R, M), v{f) = C (R,, K) negatively
(positively) isochronous with respect to time recurrence (in short: -R™ (R*)-isochronous), if
the following relation holds:

Wia, )= W, v) (W(e, u=Wa ) (2.2

If on the other hand W (A, u) = W (A, v), then the functions u (), v (f) will be called isoc-
chronous with respect to time recurrence {(in short: R-isochronous).

Proposition 2.4. The function u () & € (R,, M) is R (R') -comparable with the function
v () & C (B, K) if and only if the following condition A holds: that a subsequence {t,,k} e W (e,
u) (=W (0, u)) can be extracted from every sequence {try = Wia, u) (=W (o, u)).

The necessity of the condition follows directly from the inclusion (2.3). Conversely,
let condition A hold, but u (f) be not R--comparable with the function v¢(f). Then the function

v{t) will have a characteristic e -sequence {tn} e W(a,v), such that {t,} & W(a, ). Therefore,
we can extract from {,} a seqguence {‘mk}» such that no subsequence belonging to it appears in
the set Wi(a,u). This contradicts condition &, thus proving the sufficiency of proposition
2.4.

Proposition 2.5. 1I1f the function u{f) & C(R,, M) is R~ (R") -comparable with periodic
function v{f) = C(&R,, K), then u (1) is periodic and any period of the function v{t) is also a
period of u (f).

Let s denote any non~-zero period of the function v(t), i.e. vt -+ =v{l), VieR,. If >0,
then the sequence {—kis},., belongs to the set Wiz, v} If on the other hand s<0, then the
sequence {ksy,ey & W(a,v), Therefore, depending on the sign of the period s, one of the sequence

{+ks}=p will belong to the set W(x,v) and thus also to the set Wia,u). We shall assume,to

be specific that {ks= i}, yeW(a, u). Conseguently limpy,fu(fx-+#,u{)]=0as k- oo and we have

u(t)=kliliu(t+tk)=’}imu(t+t;,+zm—tk)r—‘klimu[t—{-tk+
(k+§)s—»ks}=éimu{t+s+tk)=u(t+s)

i.e. u{t)=u(-+s5. This means that s is a period of the function u (.

Proposition 2.6. The function u(f)=C (R,, M) is R-comparable with periodic function
vy C (R, K) if and only if u(f) is R (R*)-comparable with v (2).

The necessity is obvious. Let w(t) be R~ -~comparable with periodic function ©v(f). Accord-
ing to proposition 2.4 the function u(t) is periodic and every period of »(f) is also a period
of u{f). Let s be the smallest positive period of the function u{) , and let {&} be an
arbitrary sequence belonging to tthe set Wi(w,v). We can find, for every natural number k, an
integer s is such a manner that ss«< & < (- 1)s. Here the sequence {lligy, wWhere I =ty 5,

is bounded, and we can extract from it a convergent subisequence {i):
liml, =1, 0<I<s
jeoo N
Then

vit+ )= k{: vt -+ tki) =i1_i.r:v(t +tki ——skis) = }:210 vit+ tk‘) == b (£}

This means that !/ is a period of v{1). Therefore we have either I=0, or I=3s In each
of these cases we have

,!Lriu(t+lki)=ilir:"(t+l*i+skis)=il_i,?°u(t+lki)=u(‘+l)=u(t)

Thus {t,,i} & Wi{e, 4, 1.e. condition A holds. Then according to (2.5) u(f is R+-comparable
with v (8.
From Propositions 2.5 and 2.6 and Theorem 2.1.1 of /4/, we have

Proposition 2.7. The function u(f)e C (R, M) is R™(R*) -comparable with periodic
function v (f) & C(R,, K) if and only if u (f) is periodic and every period of v () is also a
period of u (f).

Proposition 2.8. The necessary and sufficient condition for the functien u (&) & € (Ry, M)
to be HA™(R') -comparable with the function v () € C (R,, K), is that a continuous mapping P

of the set g(Ry, u(t)) onto the set g(R,, v()) exists for all s& R,”, the mapping satisfy-
ing the relation
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plvt+s)l=u(+s), t= R, 2.5)

The proof is analogous to that of Theorem 2.1.2 of /4/, the latter expressing the compar-
ability of u (f)with the function v (2).

Let M be a Banach space p(u, v) =|lu —v|l, and f(f) = C (R, M). We have the following two
propositions /4/.

Proposition 2.9. If the derivative u' ({) = C (R,, M) of the function u (t) = C (R, W) is
uniformly continuous on R;,~ (R,*), then it is R~ (R") -comparable with u (1.

Proposition 2.10. If f(f) < C(R,, M) and has a negatively (positively) compact primitive
u(t)yeC (R, M), thenu(t)is R~ (R") -comparable with the function f ().

3. R -isochronism of the kinetic energy and motion of the L™ -stable system
G,. Let

He . ql= I Mifz#(t,0) + 42 (6.9) + 22 (8 )]

be the polar moment of inertia of the system &,, and

1'[g(t,q)]=2:§1Milzi(t'q)ui(t, D+ unt vt )+ 3.1
Z; (t7 Q)wl (tv 9)]
I"'lgt, 9l =2{Tlg(t, 9) + A} (3.2)

be the first and second derivative with respect to time t, of the function [ lg (¢, ¢)], whexre h
is the energy constant.

Equation (3.2) is called the Lagrange-Jacobi equation /1/.

Note that the motion g (¢, ¢) is generated by the dynamic system if and only if

Tlg(t, 9l = C (R, RM.

We shall henceforth assume that the variables in g (¢, g), are dimensionless, and put
Qlgt, Pl =1I[g(t ¢} + 2T lg(t, 9)). Wwe have Qlg(t, @)l =1l g(t, q)IF for every fixed t& R,. This
yields.

Proposition 3.1. The motion g (t, gy of the system G, is L”-stable if and only if the
function Qlg (¢, 9)l = Q (), @ (1) & C (R,, R,"). is L™ -stable.
Since the function [ (g (¢, ¢)], T lg (¢, ¢)] is non-negative, we have

Proposition 3.2. The function Qlg (¢, g)} is L~ -stable if and only if the functions
Ilg(t, o, Tlg(t, ¢)) are L™ -stable.

Proposition 3.3. If the motion g (t, q) of the system G, is L™ ~stable, then the functions
IHg, Ql=I®, I'lgt, pt =1 @), I" g, )l =" (t), T lg(t, g)}l = T (tyare R ~isochronous.

The conditions of the proposition imply that the motion g(t ¢ is L--stable. Then, by
virtue of Proposition 3.1 the function Qlg(t, ¢)] will be L--stable, while by virtue of Propos-
ition 3.2, every function I[g(t ¢)l, T [g(t, 9] will be L--stable. Therefore the following inequal-
ities hold:

sup [1(8)|< oo, sup |I"()| oo, sup [I7 ()] <00
=t =R L7 Tt

from which the uniform continuity in R~ of the functions 7 (), £ (1), 17 () and T (1 follows. This
in turn yields, according to Proposition 2.6. the R~ -comparability of the functions I°(s) with
I@®, I'@with I'@), and I () with 7T (). Since the L- -stability implies the negative compact-
ness, it follows by virtue of Proposition 2.10, that the function T (1) will be comparable with
the function I (1), I'{ty with I () and I (¢ with /' (z). Consegquently, the functions listed above
in Proposition 3.3 are R-~isochronous with respect to each other.

Proposition 3.4. I1f the motion g (¢, ¢) of the system G, is L7-stable, then the functions

Q () and T (t) are R -isochronous.
Let {&x}e W (a, T). According to the proposition 3.3, {ty} = W (@, I). These inclusions indicate

that
klim T+ 4)=T(@), liml@g+t)=1(@
) K—woo
Then
klim Qu+t)= lim [J(t+1)+2T (t+1¢)] =
—o0 koo
klim Tiu44)+2lim T+ 4)=1()-2T{)=Q()
—c0 k—»co g

i.e. {&) & W(a, ¢), and according to Proposition 2.4 the function @ (! is R- -comparable with T (1.
Conversely, let (&} e W(a, Q), 1i.e.
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;l:if;o t+u) =00

Then
}(im{{?{t+tk)+2hlzo(t)+2k'

since Q) +2h=1{t)+ 21T (1) + k), we obtain by virtue of (3.2), the differential eguation
I+ 7(t)=Q{-+ 2k Recalling that in addition to g{i, ¢ the expression git+4s,¢ is alsc
a solution of problem (1.1), (1.2) for every fixed se R, , we obtain

"t )+ 1 @-+0)=Q @+ )+ 2k
The equation has a particular solution of the form

i
TE+1) =Ssin(i—s)[Q(!k+s)+2k}&s
0

from which we find, taking the inclusion #f e Wa, () into account, that

1
kl-i’r:xpI(t-;—tk)zgsin(t~s)[Q(s)+2h]ds=I(t)
@
i.e. {x} = W(a,l) and I(t) is R--comparable with the function ¢ (1.

According to Proposition 3.3, the functions 7 () and T (1) are R -isochronous. Therefore
ik} s W{a,I) with 7 {) is R-~comprable with @ (). Then the mutually R--comparable functions
Q@) and T (1) are R--isochronous.

The following proposition is a corollary to Propositions 3.3 and 3.4.

Proposition 3.5. If the motion of the system G, is L"-stable, then the functions 7 (1),
I, I" (), T(t) and @ (1) are R -isochronous.

Let us denote by Flg (¢, )], FIQ ()] the sets of all displacements of the functions g({t, g)
and Q(f), and by ¢ the mapping of the set F[g(¢, g)] onto the set FI{Q ()}, defined for all
fixed s& R, by the relation glg(t+s @l =Qlg(t+s ¢l = Q-+ s.It is clear here that
glg(t+s Ql=llgt+s @} for every fixed {E R, and for all s& R,. Therefore the follow-
ing propeosition holds.

Proposition 3.6. The mapping ¢ is single-valued, continuous and closed.
We note that the continuous and closed mappings belong to the class of so-called factorial
mappings /5/.

-Proposition 3.7. The motion g(t, ¢y is non-periodic and the mapping ¢ is in 1:1 corres-
pondence if and only if the function @ () is non-periodic.

Necessity. Let the motion g{t,¢) be non-periodic and the mapping ¢ be in l:1 corres-
pondence. Then for all ¢ 1, we have

git+14, 9, gttt 9=Fle(t, 9l e+ 4, ke + 19

and the mapping ¢ places in 1l:1 correspondence such elements @ (t+4#) and Q@+ t), that @ (-
t) % Q{t+t). Therefore we have, in particular, Q()==Q(t+s), Vs R,. Consequently nc real
number s is a period of the function @ (). In other words, the function ¢ () is non-periodic.

Sufficiency. Let the function Q(t) be non-periodic, i.e. Veis R, Q)= Q(t+ s, where
s+ 0. Then g(t,g)g{t-+s5 ¢ even more so, and g(, ¢ is non-periocdic. We shall assume that
under these conditions the mapping ¢ is not in 1:1 correspondence. Then the function Q(t+ t)
has, for some 4 & R;, at least two inverse images g (t+ 4,4¢), g(t-+ 4, ¢}, Such that lgit+1t,9 )%=
le¢t+ 6 *=0Q¢+4u) and —4>0. “Therefore Je(t.P=[s(t+7T, P=0Q(+D =0 for all
te Ry, where 1= t,— ;>0 This contradicts the condition that Q) is a non-periodic
function, and the contradiction proves the sufficiency of the proposition.

Knowing that every factorial mapping in 1l:1 correspondence is a homeomorphism, we use
Propositions 2.8 and 3.7 to obtain

Proposition 3.8. If the motion g (!, g} of the system G,is L™ -stable and the function
Q (t) is non-periodic, then the motion g (t, 9) and kinetic energy T lg(#, q)] along the trajec-
tory of this motion are R -isochronous as functions of time.

4. Certain properties of the L"-stable motion of a system with recoverable
kinetic energy.

Propositien 3.8 implies that if the motion g (I, g) of the system G, is L -stable and the
kinetic energy T [g{(t, g)l non~periodic, then the motion g(f, ¢) is non-perodic. Taking this
intc account we shall first consider the case of the non-periodic function T lg(z, ¢)l.

Proposition 4.I1. If the motion g(f, ¢g) of system G, is L -stable and the kinetic energy
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T [g(t @)} is P--stable, then the motion g (f, q) of the system is L -stable and R-isochronous

with the function T {g(, 9l

Indeed, the function Qlg(, ¢} and motion g(, ¢ are L--stable, and together with the
function Tig(t, ¢l , also P--stable. According to Proposition 2.1, since the motion g( ¢ is
simultaneously L-- and P--stable, it is also L-stable. Then, according to Proposition 3.8
it is R-isochronous with the function T [ (¢, ).

Proposition 4.1 has a converse, i.e. the motion g (¢ ¢q) of the system G, is L-stable and
P-stable if and only if it is L™-stable and the kinetic energy T [g(t, ¢)] is P-stable.

Proposition 4.2. 1f the motion g(f, gy of the system G,is L -stable and the kinetic
energy Tlg (¢, g)l is minimal, the motion g(f, ¢} of the system is recurrent.

According to Proposition 3.2 the function Tlg{t, ¢)] is L--stable, or the motion g{f g is

L--stable. Therefore, the function 7lg{t ¢} is L-~stable. According to the Birkhof theorem

the L-stable and minimal function T{g(, ¢)] is recurrent, and therefore even more P-stable.
Consequently, the motion g(t,q is L-stable. Then, in accordance with the theorem on the
integrals of recurrent functions, the function Qlg(4 ¢)] is also recurrent and R-isochronous
with the motion g{t,¢). Therefore a homeomorphism ¢ exists between the sets Flg(, ¢t and F[Q (5].
In particular, the inverse mapping ¢! is continuous at the point Q& FI@ ()], i.e. for avery
e>0 a number J4(e, ¢ (4} >e, can be found such, that

su t L q) —g (2
mglllmﬂg( +na—gtgi<e
so long as
su t —Q{
|r|<‘1’/elQ(+s) LI
Let ¢ be any fixed number. Since ¢! is continuous, we can find the number d8(e, Q{1 at
a point belonging to @ ({t). Since Q{) is a recurrent function, it follows that for & thus
cbtained the set
R = (se R | su t4-8) - Q()I O
5 (Q) = { xlmqeplQ(w—S) Qi)

is relatively dense in R,. Therefore, the set

Rgy=(ah };:;32?:3 fgt+s9) —g{t al<el

containing the set R,(Q), is relatively dense in R,. Thus the motion ¢{t, g is L-stable and
the set R,(g) is relatively dense in R, for any e>0. By virtue of the criterion of recurr-
ent motions /2, 3/, the motion g¢(t ¢ is recurrent.

Proposition 4.2 also has a converse, and the following proposition holds: the motion
g(t, ) of the system G, is recurrent if and only if it is L™-stable and the kinetic energy is
minimal.

Using the Bochner theorem on almost periodic motions /3/ we can prove, in exactly the
same way.

Proposition 4.3. If the motion g ({, ¢) of the system G, is L™stable and the kinetic
energy I lg(, )] almost periodic, then the motion g (¢, q) of the system is almost periodic.

Proposition 4.3 also holds in a more general form: the motion g(f, g0 of the system G,
is almost periodic if and only if it is L™-stable and the kinetic energy T lg(t, ¢} is almost
periocdic.

Proposition 4.4. If the motion g({i, q) of the system G, is L -stable and the kinetic
energy T {g (¢, ¢y} is periodic, then the motion g(t, g) of the system is periodic.

Let the motion g{t 4q) be L--stable and the kinetic energy T{g(t, ¢)] periodic. According
to Propositions 3.2 and 3.5, the function Q[g(s ¢)] is periodic and the motion ¢ (¢, ¢) L-stable.
Here either every real number se R, is a period of the function ¢ I[z(t ¢9)l, or the function

@lg(t, 9] has a minimum positive real periocd 7t. In the first of these cases the function
Qlg(t, 9l is constant and its total time derivative is equal to zero by virtue of system (1.1},
Therefore, the motion g{t,¢0 is periocdic and Proposition 4.4 is thus proved.
Let us assume that te& R, is the minimum period of the function ¢({g{t ¢l. Then the set

Fr@={t+sqlselk—17, k)

will map onto the set /M Q)= {Qlg+ s, allses((k— 1)1, k&v)} for any natural k, in 1:1 correspond-
ence.

Indeed, if it is not so, the functions g+ s,4q). gt + 5, ¢ will have the same mapping for
certain s,aelk— HT,00, 1.€. Qlglt+ 5, 9l =02t 4+ 5, ¢l and the number s=|5 — |t will
be a period of the function Qlgf{t,¢)]. This contradicts the condition of the choice of 1.
Therefore the mapping ¢ can be additionally defined so that it becomes a homemorphism. Then
the function Qlz (4 g)] and the motion g, ¢ will be isochronous. According to Proposition 2.7
the motion g, ¢ is periodic. )

Like the previous propositions, Proposition 4.4 has a converse and the following
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proposition holds: the motion g(t, g) of systemG, is periodic if and only if it is L7 -stable
and the kinetic energy T lg (t, q)] is periodic.

Thus the recurrence of the kinetic energy of the negatively Lagrange-stable system of
n bodies fully defines the character of the recurrence of the motion of the system. Since
the differential equations (1.1) of the motion of the system of n bodies have, in particular,
the energy integral from which we can obtain an explicit expression for the force function U
of system G,, it follows that all arguments and discussions can be applied to the function U.
Such an approach may be convenient when the recurrence of the motions is checked experiment-
ally, since when the masses are known, the force function depends on the distance between the
bodies of the system.

Conclusions. 1°. The isochronism, i.e. the mutual comparability with respect to time
recurrence of the kinetic energy and motion of the system of n bodies is the necessary condi-
tion for the Lagrange stability of motion of such a system.

2°.  The motion of an n-body system is determined by a 6n-dimensional vector function,
and its kinetic energy by a scalar function depending on the last 3n components of the veloc-
ities of motion of the system. The isochronism of the én-dimensiocnal vector function g (t,gq)
and scalar functkon T lg (¢, ¢)] = T(f) is characterized by the fact that the Lagrange stability
is a special property of the motion of an n-body system. Since the Lagrange stability repres-
ents one of the possible forms of stability of the motion, it is possible for the kinetic
energy to be minimal in some sense along the trajectory of the Lagrange-stable motion of an
n-body system. In particular, this is the case for the kinetic energy of a recurrent, almost
periodic and periodic motion of an n-body system. In the cases discussed above the kinetic
energy is minimal in the Birkhof sense.

3°. Energy constructions have a long history in celestial mechanics. However, this is
apparently the first time that the energy integral and its corollaries have been applied
directly to the qualitative study of the motion of an n-body system in the form given here.

We also note that the basic results remain valid for other forms of interaction between bodies,
provided that they depend on the distance only.
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THE SEPARATION OF MOTIONS IN SYSTEMS WITH RAPIDLY ROTATING PHASE*

A.I. NEISHTADT

In different versions of the method of averaging, the motion is separated
into rapid oscillations and a slow drift with an accuracy depending on

the order of approximation. It is shown below that in analytic systems
with rapidly rotating phase this separation can be achieved so that the
error is exponentially small. The remaining small error is shown to be
theoretically impossible to eliminate in any version of the averaging
method. From the statement of exponentially exact separation of oscilla-
tions and drift it follows in particular that the time the adiabatic
invariant is maintained in single-frequency Hamiltonian systems (such as

a pendulum with a slowly varying frequency, a charged particle in a weakly
inhomogeneous field, etc.) is exponentially large. This statement is also
used to prove that the splitting of the separatrix that occurs in the
neighbourhood of resonance close to an integrable Hamiltonian system with
to degrees of freedom, is exponentially small.
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